Eight Queens Puzzle


Eight Queens Puzzle

Avatar of ThummimS
| 0

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general n queens problem of placing n non-attacking queens on an n×n chessboard, for which solutions exist for all natural numbers n with the exception of n = 2 and n = 3.

Chess composer Max Bezzel published the eight queens puzzle in 1848. Franz Nauck published the first solutions in 1850. Nauck also extended the puzzle to the n queens problem, with n queens on a chessboard of n×n squares.

Since then, many mathematicians, including Carl Friedrich Gauss, have worked on both the eight queens puzzle and its generalized n-queens version. In 1874, S. Gunther proposed a method using determinants to find solutions. J.W.L. Glaisher refined Gunther's approach.

In 1972, Edsger Dijkstra used this problem to illustrate the power of what he called structured programming. He published a highly detailed description of a depth-first backtracking algorithm.

The eight queens puzzle has 92 distinct solutions. If solutions that differ only by the symmetry operations of rotation and reflection of the board are counted as one, the puzzle has 12 solutions. These are called fundamental solutions; representatives of each are shown below.

A fundamental solution usually has eight variants (including its original form) obtained by rotating 90, 180, or 270° and then reflecting each of the four rotational variants in a mirror in a fixed position. However, should a solution be equivalent to its own 90° rotation (as happens to one solution with five queens on a 5×5 board), that fundamental solution will have only two variants (itself and its reflection). Should a solution be equivalent to its own 180° rotation (but not to its 90° rotation), it will have four variants (itself and its reflection, its 90° rotation and the reflection of that). If n > 1, it is not possible for a solution to be equivalent to its own reflection because that would require two queens to be facing each other. Of the 12 fundamental solutions to the problem with eight queens on an 8×8 board, exactly one (solution 12 below) is equal to its own 180° rotation, and none is equal to its 90° rotation; thus, the number of distinct solutions is 11×8 + 1×4 = 92.

Feel free to try to solve the problem yourself!