Human evolution is the lengthy process of change by which people originated from apelike ancestors. Scientific evidence shows that the physical and behavioral traits shared by all people originated from apelike ancestors and evolved over a period of at least 5 million years.
One of the earliest defining human traits, bipedalism -- the ability to walk on two legs -- evolved over 4 million years ago. Other important human characteristics -- such as a large and complex brain, the ability to make and use tools, and the capacity for language -- developed more recently. Many advanced traits -- including complex symbolic expression, art, and elaborate cultural diversity -- emerged mainly during the past 100,000 years.
Humans are primates. Physical and genetic similarities show that the modern human species, Homo sapiens, has a very close relationship to another group of primate species, the apes. Humans and the great apes (large apes) of Africa -- chimpanzees (including bonobos, or so-called “pygmy chimpanzees”) and gorillas -- share a common ancestor that lived between 5 and 8 million years ago. Humans first evolved in Africa, and much of human evolution occurred on that continent. The fossils of early humans who lived between 2 and 5 million years ago come entirely from Africa.
Most scientists currently recognize some 10 to 15 different species of early humans. Scientists do not all agree, however, about how these species are related or which ones simply died out. Many early human species -- certainly the majority of them -- left no living descendants. Scientists also debate over how to identify and classify particular species of early humans, and about what factors influenced the evolution and extinction of each species.
Early humans first migrated out of Africa into Asia probably between 1.6 million and 2 million years ago. They entered Europe somewhat later, generally within the past million years. Species of modern humans populated many parts of the world much later. For instance, people first came to Australia probably within the past 60,000 years and to the Americas within the past 30,000 years or so. The beginnings of agriculture and the rise of the first civilizations occurred within the past 10,000 years.
Paleoanthropology
Paleoanthropology is the scientific study of human evolution. Paleoanthropology is a subfield of anthropology, the study of human culture, society, and biology. The field involves an understanding of the similarities and differences between humans and other species in their genes, body form, physiology, and behavior. Paleoanthropologists search for the roots of human physical traits and behavior. They seek to discover how evolution has shaped the potentials, tendencies, and limitations of all people. For many people, paleoanthropology is an exciting scientific field because it investigates the origin, over millions of years, of the universal and defining traits of our species. However, some people find the concept of human evolution troubling because it can seem not to fit with religious and other traditional beliefs about how people, other living things, and the world came to be. Nevertheless, many people have come to reconcile their beliefs with the scientific evidence.
Early human fossils and archeological remains offer the most important clues about this ancient past. These remains include bones, tools and any other evidence (such as footprints or butchery marks on animal bones) left by earlier people. Usually, the remains were buried and preserved naturally. They are then found either on the surface (exposed by rain, rivers, and wind erosion) or by digging in the ground. By studying fossilized bones, scientists learn about the physical appearance of earlier humans and how it changed. Bone size, shape, and markings left by muscles tell us how those predecessors moved around, held tools, and how the size of their brains changed over a long time. Archeological evidence refers to the things earlier people made and the places where scientists find them. By studying this type of evidence, archeologists can understand how early humans made and used tools and lived in their environments
The Process of Evolution
The process of evolution involves a series of natural changes that cause species (populations of different organisms) to arise, adapt to the environment, and become extinct. All species or organisms have originated through the process of biological evolution. In animals that reproduce sexually, including humans, the term species refers to a group whose adult members regularly interbreed, resulting in fertile offspring -- that is, offspring themselves capable of reproducing. Scientists classify each species with a unique, two-part scientific name. In this system, modern humans are classified as Homo sapiens.
Evolution occurs when there is change in the genes (the chemical molecule, DNA) inherited from the parents and especially in the proportions of different genes in a population. The information contained in genes can change by a process known as mutation. The way particular genes are expressed – that is, how they influence the body or behavior of an organism -- can also change. Genes affect how the body and behavior of an organism develop during its life, and this is why genetically inherited characteristics can influence the likelihood of an organism’s survival and reproduction. Evolution does not change any single individual. Instead, it changes the inherited means of growth and development that typify a population (a group of individuals of the same species living in a particular habitat). Parents pass adaptive genetic changes to their offspring, and ultimately these changes become common throughout a population. As a result, the offspring inherit those genetic characteristics that enhance their chances of survival and ability to give birth, which may work well until the environment changes. Over time, genetic change can alter a species' overall way of life, such as what it eats, how it grows, and where it can live. Human evolution took place as new genetic variations in early ancestor populations favored new abilities to adapt to environmental change and so altered the human way of life.
Primates
Human beings belong to the mammalian group known as Primates -- the scientific category that contains over 230 species of lemurs, lorises, tarsiers, monkeys of the Old and New World, and apes. Modern humans, early humans, and other primate species all share many similarities and have some important differences. Knowledge of these similarities and differences helps scientists to understand the roots of many human traits and the significance of each development in human evolution.
All primates, including humans, share at least part of a set of common characteristics that distinguish them from other mammals. Many of these characteristics evolved as adaptations for life in the trees, an environment in which the earliest primates evolved. These characteristics include more reliance on sight than smell; overlapping fields of vision, allowing stereoscopic (three-dimensional) sight; limbs and hands adapted for clinging on, leaping from and swinging in the trees; the ability to grasp and manipulate small objects (using fingers with nails instead of claws); large brains in relation to body size; and complex social lives.
The scientific classification of primates reflects evolutionary relationships among individual species and groups of species. Strepsirhine (meaning "wet nosed") primates -- of which the living representatives include lemurs, lorises, and other groups of species -- are all commonly known as prosimians. Strepsirhines are the most primitive of living primates. They share all of the basic characteristics of primates, although their brains are neither particularly large nor complex and they have a more elaborate and sensitive olfactory system (involved in the sense of smell) then do other primates.
The earliest monkeys and apes evolved from ancestral haplorhine (meaning "dry nosed") primates, of which the most primitive living representative is the tarsier. Tarsiers were previously grouped with prosimians, but many scientists now recognize that tarsiers, monkeys, and apes share some distinctive traits, and group the three together. Monkeys, apes, and humans -- who share many traits not found in other primates -- together make up the suborder Anthropoidea. Anthropoid primates are divided into New World (South America, Central America, and the Caribbean Islands) and Old World (Africa and Eurasia) groups. The platyrrhine (broad-nosed) monkeys represent the first, and the second is the catarrhine (downward-nosed) monkeys and apes. Humans belong to this second group.
Apes and humans together make up the superfamily Hominoidea, a grouping that emphasizes the close relationship among these species. Scientists do not all agree about the appropriate classification of the families within this superfamily. Living hominoids are grouped into either two or three families: Hylobatidae, Hominidae, and sometimes Pongidae. Hylobatidae consists of the small or so-called lesser apes of Southeast Asia, commonly known as gibbons and siamangs. The Hominidae (hominids) include humans and, according to some scientists, the great apes. For those who include only humans among the Hominidae, all of the great apes, including the orangutans of Southeast Asia, belong to the family Pongidae.
Traditionally, the term "hominid" has referred to species of humans that evolved after the split between early humans and other ape lineages. But genetic evidence, which shows chimps and humans to be more closely related genetically (and evolutionarily) to each other than to any other ape, supports placing all of the great apes and humans together in the family Hominidae. According to this reasoning, the evolutionary branch of Asian apes leading to orangutans, which separated from the other hominid branches by about 13 million years ago, belongs to the subfamily Ponginae. The African apes (gorillas, chimpanzees, and humans) are then classified in the subfamily called Homininae (or hominines). And finally, the line of early and modern humans belongs to the tribe (classificatory level above genus) Hominini, or hominins.
This classification would be true to the genetic evidence. But it tends to be confusing when learning about the subject, as many similar names (hominoid, hominid, hominine, and hominin) would apply to the different aspects of ape and human evolution. In this article the term "early human" refers to all species of the human family tree since the divergence from a common ancestor with the African apes. Popular writing often still uses the word "hominid" to mean the same thing.
Humans as Primates
About 98 percent of the genes in people and chimpanzees are identical, making chimps the closest living biological relatives of humans. This does not mean that humans evolved from chimpanzees, but it does indicate that both species evolved from a common ape ancestor. Orangutans, the great apes of Southeast Asia, differ genetically from humans to a greater extent, indicating a more distant evolutionary relationship.
Modern humans have a number of physical characteristics indicative of an ape ancestry. For instance, people have shoulders with a wide range of movement and fingers capable of strong grasping. In apes, these characteristics are highly developed as adaptations for brachiation (swinging from branch to branch in trees). Although humans do not brachiate, the general anatomy of that earlier adaptation still remains. Both people and apes also have larger brains and greater cognitive abilities than do most other mammals.
Human social life, too, shares similarities with that of African apes and other primates -- such as baboons and rhesus monkeys -- that live in large and complex social groups. Group behavior among chimpanzees, in particular, strongly resembles that of humans. For instance, chimps form long-lasting attachments with each other; participate in social bonding activities, such as grooming, feeding, and hunting; and form strategic coalitions with each other in order to increase their status and power. Early humans also probably had this kind of elaborate social life.
However, modern humans fundamentally differ from apes in many significant ways. For example, as intelligent as apes are, people's brains are much larger and more complex, and people have a unique intellectual capacity and elaborate forms of culture and communication. In addition, only people habitually walk upright, can precisely manipulate very small objects, and have a throat structure that makes speech possible.
The Fossil Primates
The origin of the mammalian group primates is traced back to Plesiadapiformes, the last common ancestors of strepsirhines and other mammals. Plesiadapiformes evolved at least 65 million years ago. They were creatures similar to the modern tree shrews. The earliest primates evolved by about 55 million years ago. The first strepsirhine primates, fossil species similar to lemurs and tarsiers, evolved during the Eocene epoch (about 56 to 34 million years ago). The oldest lineages of catarrhine primates, from which monkeys and apes evolved, are known between 50 and 33 million years ago. A primate known as Propliopithecus (one lineage sometimes called Aegyptopithecus), from the Fayum fossil sites of Egypt, is an archaic-looking catarrhine, and is thought to be what the common ancestor of all later Old World monkeys and apes looked like. So Propliopithecus may be considered an ancestor, or closely related to a direct ancestor, of humans.
Hominoids, or members of the superfamily Hominoidea, evolved during the Miocene epoch (24 million to 5 million years ago). Large ape species had originated in Africa by 23 or 22 million years ago. Among the oldest known hominoids is a group of apes known by its genus name, Proconsul. Species of Proconsul had features that suggest a close link to the common ancestor of apes and humans. The ape species Proconsul heseloni lived in dense forests of eastern Africa about 20 million years ago. It was agile in the trees, with a flexible backbone and narrow chest of a monkey, yet capable of wide movement of the hip and thumb as in apes.
Early in their evolution, the large apes underwent several radiations, periods when species originated and became more diverse. After Proconsul had thrived for several million years, a group of apes from Africa and Arabia known as the afropithecines evolved around 18 million years ago and diversified into several species. By 15 million years ago, apes had migrated to Asia and Europe over a land bridge formed between the Africa-Arabian and Eurasian continents, which had previously been separated. Around this time, two other groups of apes had evolved – namely, the kenyapithecines of Africa and western Asia (first known about 15 million years ago) and the dryopithecines of Europe (first known about 12 million years ago). It is not yet clear, however, which of these groups of ape species may have given rise to the common ancestor of African apes and humans.
The First Humans: The Early Australopiths
By at least 4.4 million years ago in Africa, an apelike species had evolved that had two important traits, which distinguished it from other apes: (1) small canine (eye) teeth (next to the incisors, or front teeth) and (2) bipedalism--that is the ability to walk on two legs. Scientists commonly refer to these earliest human species as australopithecines, or australopiths for short. The earliest australopith species known today belongs to the genus Ardipithecus. Other species belong to the genus Australopithecus and, by some classifications, Paranthropus. The name australopithecine translates literally as "southern ape," in reference to South Africa, where the first known australopith fossils were found.
Countries in which scientists have found australopith fossils include Ethiopia, Tanzania, Kenya, South Africa, and Chad. Thus, australopiths ranged widely over the African continent. The Great Rift Valley of eastern Africa, in particular has become famous for its australopith finds because past movements in Earth's crust in this region were favorable to environments in which bones are easily preserved and, later, to exposure of ancient deposits of fossilized bones.
There are many ideas about why the early australopiths split off from the apes, initiating the course of human evolution. Virtually all hypotheses invoke environmental change as an important factor, specifically in influencing the evolution of bipedalism. Some well-established ideas about why humans first evolved include (1) the savanna hypothesis, (2) the woodland-mosaic hypothesis, and (3) the variability hypothesis.
The savanna hypothesis argues that the Miocene forests of Africa became sparse and broken up between 5 and 8 million years ago due to a cooler and drier global climate. This drying trend led to the separation of an ape population in eastern Africa from other populations of apes in the more heavily forested areas of western Africa. The eastern population had to adapt to drier, open savanna environments, which favored the evolution of terrestrial living. Terrestrial apes might have formed large social groups in order to improve their ability to find and collect food and to fend off predators. The challenges of savanna life might also have promoted the rise of tool use, for purposes such as scavenging meat from the kills of predators. These important evolutionary changes would have depended on increased mental abilities and, therefore, may have correlated with the development of larger brains in early humans.
Critics of the savanna hypothesis argue against it on several grounds, but particularly for two reasons. First, an early australopith jaw similar to A. afarensis has been found in Chad in west-central Africa, 2500 kilometers west of the African rift valley. This find suggests that australopiths ranged widely over the African continent and that East Africa may not have been fully separated from environments further west. Second, there is growing evidence that open savannas were not prominent in Africa until sometime after 2 million years ago.
Criticism of the savanna hypothesis has spawned alternative ideas about early human evolution. The woodland-mosaic hypothesis proposes that the early australopiths evolved in a mosaic of woodland and grassland that offered opportunities for feeding both on the ground and in the trees. Ground feeding then favored regular bipedal activity and, eventually, the evolution of anatomical features of the hip, leg, and foot that assisted this form of locomotion.
The variability hypothesis suggests that early australopiths experienced many changes in environment and ended up living in a range of habitats, including forests, open-canopy woodlands, and savannas. In response, their populations became adapted to a variety of surroundings. Evidence from early australopith sites, in fact, shows this range of habitats. So the unique appearance of their skeletons may have allowed them the versatility of living in habitats with many or few trees.
From Ape to Human
Fossils from several different early australopith species that lived between 4 million and 2 million years ago show a variety of adaptations that mark the transition from ape to human. The very early period of this transition, prior to 4 million years ago, remains poorly documented in the fossil record, but those fossils that do exist show the most primitive combinations of ape and human features.
Fossils reveal much about the physical build and activities of early australopiths, but little is known about surface physical features, such as the color and texture of skin and hair, or about certain behaviors, such as methods of obtaining food or patterns of social interaction. For these reasons, scientists study the living great apes -- particularly the African apes -- to better understand how early australopiths might have looked and behaved. The study of living apes, therefore, sheds light on how the transition from ape to human might have occurred.
For example, australopiths probably resembled the great apes in characteristics such as the shape of the face and the amount of hair on the body. Australopiths also had brains and body sizes in the same range exhibited by the great apes, leading scientists to believe that the australopiths had similar mental capabilities and possibly even social structures.
Australopith Characteristics
Most of the distinctly human physical qualities in australopiths related to their bipedal stance. Before australopiths, no mammal had ever evolved an anatomy for habitual upright walking. African apes move around their environments in a variety of ways. They use their arms to climb and to swing through the trees (known as brachiation). They knuckle-walk when on the ground, leaning on the middle parts of their fingers. And sometimes they move on two legs, as when chimpanzees feed on low branches or when gorillas show threat displays. The australopith body was devoted especially to bipedal walking. Australopiths also had small canine teeth, as compared with long canines found in almost all other catarrhine primates.
Other characteristics of australopiths reflected their ape ancestry. Although their canine teeth were not large, their faces stuck out far in front of the braincase. Their brains were about the same size as apes' today, about 390 to 550 cubic cm (24 to 34 cubic in) but were enlarged relative to body size. Their body weight, which can be estimated from their bones, ranged from about 27 to 49 kg (60 to 108 lb.) and they stood about 1.1 to 1.5 m (3.5 to 5 ft) tall. Their weight and height compare closely to those of chimpanzees (chimp height measured standing). Some australopith species had a large degree of sexual dimorphism -- males were much larger than females -- a trait also found in gorillas, orangutans, and some other primates.
Australopiths also had curved powerful fingers and long thumbs with a wide range of movement. Apes, in comparison, have longer, very strong, even more curved fingers – which are advantageous for hanging and swinging from branches -- but their very short thumbs limit their ability to manipulate small objects. While the fingers were longer than in modern humans, the australopith finger bones were not so long and curved as to suggest arm swinging. It is not yet clear whether these changes in the hand of early australopiths enabled them to use tools in a better way than earlier apes or even modern chimpanzees today.
Bipedalism
The anatomy of australopiths shows a number of adaptations for bipedalism. Adaptations in the lower body included the following: The australopith ilium, or pelvic bone, which rises above the hip joint, was much shorter and broader than it is in apes. This new shape enabled the hip muscles to steady the body during each bipedal step. The australopith pelvis overall had evolved a more bowl-shaped appearance, which helped support the internal organs during upright stance. The upper legs angled inward from the hip joints, which positioned the knees to better support the body during upright walking. The legs of apes, on the other hand, are positioned almost straight down from the hip, so that when an ape walks upright for a short distance, its body sways from side to side. The australopith foot was also reshaped, including shorter and less flexible toes than an ape's, which provided a more rigid lever for pushing off the ground during each step.
Other adaptations occurred above the pelvis. The australopiths’ spine had an S-shaped curve, which shortened the overall length of the torso and gave rigidity and balance when standing. By contrast, apes have a relatively straight spine. The australopith skull also had an important adaptation related to bipedalism. The opening at the bottom of the skull, known as the foramen magnum, where the spinal cord attaches to the brain, was more forward than it is in apes. This position set the head in balance over the upright spine.
Australopiths clearly walked upright on the ground, but paleoanthropologists debate about whether the earliest humans also spent a lot of time in the trees. Certain physical features indicate that they spent at least some of their time in the trees. Such features include their curved and elongated fingers and elongated arms.
Explaining Bipedalism
Many different explanations have been offered to account for the evolution of upright walking. Some of the ideas include: (1) freeing the hands, which was advantageous for carrying food or tools; (2) improved vision, especially to see over tall grass; (3) reducing the body's exposure to hot sun, which allowed better cooling during the day in an open landscape; (4) hunting or weapon use, which was easier with upright posture; and (5) feeding from bushes and low branches, which was easier when standing and moving upright between closely spaced bushes.
Although none of these hypotheses has overwhelming support, recent study of chimpanzees favors the last one. Chimps move on two legs most often when feeding on the ground from bushes and low branches. Chimps today are not, however, very good at walking in this way over long distances. As the distances between trees or groves of trees became wider during drier periods bipedal behavior in pre-human populations may have become more frequent. Accordingly, a more effective bipedal gait was favored not as an adaptation to savanna living but rather as a way of crossing less favored areas of open terrain. An ability to climb trees continued to be important. This idea may currently be the best explanation for the unique adaptation of the early australopiths: a combination of long, powerful arms, slightly elongated legs, and lower limbs reshaped for upright walking over long distances on the ground.
Small Canine Teeth
Compared with apes, humans have very small canine teeth. Apes, particularly males, have thick, projecting, sharp canines that they use for displays of aggression and as weapons to defend themselves. By 4 million years ago, australopiths had developed the human characteristic of having smaller, flatter canines. Canine reduction might have related to an increase in social cooperation among humans and an accompanying decrease in the need for males to make aggressive displays.
The Origin of the Genus Homo
Origin of the modern human genus, Homo, is one of the most intriguing and controversial questions in paleoanthropology. The oldest fossils of our genus are at least 2.3 to 2.5 million years old. The evolution of the modern human genus can be divided roughly into three periods: early, middle, and late. Species of early Homo resembled the early australopiths in many ways. Some early Homo species lived until possibly 1.6 million years ago. The period of middle Homo began perhaps between 1.8 million and 2.0 million years ago, overlapping with the end of early Homo. Species of middle Homo evolved an anatomy much more similar to that of modern humans but had comparatively small brains. The transition from middle to late Homo evolved large and complex brains and eventually language. Culture also became an increasingly important part of human life during the most recent period of evolution.
The key change usually considered to signal the origin of Homo is an increase in brain size, measured by the volume of the inside of the brain case (cranial capacity). The average cranial capacity of modern humans (Homo sapiens) is 1350 cubic centimeters (cc), although the range of variation is large, around 1000 to 2000 cc. In the possible ancestors of Homo (Australopithecus afarensis and A. africanus) brain size was about 350 to 500 cc. What size, it may be asked, defines the difference between the brains of Homo and Australopithecus?
Louis Leakey originally argued that the origin of Homo related directly to the development of toolmaking--specifically, the making of stone tools. This once popular idea of "man the toolmaker" considered toolmaking to require certain mental skills and fine hand manipulation that may exist only in members of our own genus. Indeed, the species name Homo habilis (meaning "handy man") refers directly to the making and use of tools.
However, several species of australopiths lived at the same time as early Homo, making it unclear which species produced the earliest stone tools. Recent studies of australopith hand bones have suggested that at least one of the robust species, Paranthropus robustus, could have made tools. In addition, during the 1960s and 1970s researchers first observed that some nonhuman primates, such as chimpanzees, make and use tools, suggesting that australopiths and apes that preceded them probably also made some kinds of tools. Furthermore, several early human lineages (including early and later australopiths and possibly Homo) lived at the time of the oldest known stone tools, around 2.5 million years ago. So, scientists are not sure which early humans were responsible for the gradual proliferation of stone tools starting around that time.
Still, according to some scientists, early Homo was probably the toolmaker since handheld tools for cutting and pounding were most useful to these smaller-toothed humans, whereas intensive chewing of food inside the mouth was the hallmark of the robust australopiths. Furthermore, stone tools like the oldest known ones continued well after the early australopiths died out.
Some scientists think that a period of environmental cooling and drying in Africa set the stage for the evolution of Homo. According to this idea, many types of animals suited to the challenges of a drier environment originated between about 2.8 million and 2.4 million years ago, and these included the first species of Homo. A toolmaking human might have had an advantage in obtaining alternative food sources as vegetation became sparse. The new foods might have included underground tubers and roots and meat obtained through scavenging or hunting. However, the period in question consisted of several fluctuations between dry and wet environments, not just a change to dry. Thus brain enlargement, early stone tool use, and expansion of diet all may have been ways of adapting to unpredictable and fluctuating settings rather than just dry, cool ones. Also, the supposed pulse of species originations and extinctions is not well documented. In short, the exact causes of the origin of Homo are poorly known; future fossil discoveries in this key time period should help in understanding the earliest origin of our genus.
Early Homo
Paleoanthropologists generally recognize two species of early Homo. The two species, Homo habilis and Homo rudolfensis, overlapped in time and appear to have co-existed in the same region with other early human species. The record is unclear because most of the early fossils that scientists have identified as species of Homo occur as isolated fragments. In many places, only teeth, jawbones, and pieces of skull -- without any other skeletal remains -- indicate that new species of smaller-toothed humans had evolved as early as 2.5 million years ago. Scientists cannot always tell whether these fossils belong to late-surviving gracile australopiths or early representatives of Homo. The two groups resemble each other because Homo likely descended directly from an early species of australopith.
Homo habilis
In the early 1960s, at Olduvai Gorge, Tanzania, Louis Leakey, anatomist John Napier, and paleoanthropologist Philip Tobias described a newly discovered group of early human fossils that showed a cranial capacity of 590 to 690 cc. Based on this brain size, which was above the range of that known in australopiths, the scientists argued that a new species, Homo habilis, should be recognized. Other scientists questioned whether this amount of brain enlargement was sufficient for applying the genus name Homo, or even whether H. habilis was different from Australopithecus africanus, as the teeth of the two species look similar. However, scientists now widely accept both the genus and species names designated by the Olduvai team.
H. habilis lived in eastern and possibly southern Africa between about 1.9 million and 1.6 million years ago, and maybe as early as 2.4 million years ago. Although the fossils of this species somewhat resemble those of australopiths, H. habilis had smaller and narrower molar teeth, premolar teeth, and jaws than did its predecessors and contemporary robust species.
A fragmented skeleton of a female from Olduvai shows that she stood only about 1 m (3.3 ft) tall, and her arms were longer relative to her legs than they were the australopith Lucy (A. afarensis). At least in the case of this individual, therefore, H. habilis had very apelike body proportions. However, H. habilis also had more modern-looking feet and hands capable of producing tools. Many of the earliest stone tools at Olduvai have been found with H. habilis fossils, suggesting that this species made them.
Scientists have noticed a high degree of variability in body size as more fossils of early Homo were discovered. This could mean that H. habilis had a large amount of sexual dimorphism. For instance, the Olduvai female skeleton was dwarfed in comparison with some other fossils -- exemplified by a sizable early Homo cranium from East Turkana in northern Kenya. However, the differences in size actually exceeded those expected between males and females of the same species, and this finding has helped convince many researchers that another species of early Homo had lived in eastern Africa at around the same time.
Homo rudolfensis
This second species of early Homo was given the name Homo rudolfensis, after Lake Rudolf (now Lake Turkana), northern Kenya. The best-known fossils of H. rudolfensis come from the area surrounding this lake and date from about 1.9 million years ago. Paleoanthropologists have not yet determined the entire time range during which H. rudolfensis lived.
This species had a larger face and overall skull than did H. habilis. The cranial capacity of H. rudolfensis averaged about 750 cc. Scientists need more evidence to know whether the brain of H. rudolfensis in relation to its body size was larger than in H. habilis. A larger brain-to-body-size ratio can indicate increased mental abilities. H. rudolfensis also had fairly large teeth, approaching the size of those in robust australopiths. The discovery of even a partial fossil skeleton would reveal whether this larger form of early Homo had apelike or more modern body proportions. Scientists have found several modern-looking thighbones that date from between 1.8 million and 2 million years ago and may belong to H. rudolfensis. These bones suggest a body size of 1.5 m (5 ft) and 52 kg (114 lb.).
Middle Homo
By about 1.9 million years ago, the period of middle Homo had begun in Africa. Until recently, paleoanthropologists recognized one species in this period, Homo erectus. Many now recognize three species of middle Homo: H. ergaster, H. erectus, and H. heidelbergensis. However, some still think H. ergaster is an early African form of H. erectus, or that H. heidelbergensis is a late form of H. erectus.
The skulls and teeth of early African Homo ergaster populations differed subtly from those of later H. erectus populations from China and the island of Java in Indonesia. These subtle differences seem to parallel the differences that occurred between later humans, including our own species, and H. erectus. Since this appears to be the case, the early African species may be more closely related to modern humans. Homo heidelbergensis has similarities to both H. erectus and the later species H. neanderthalensis, and many paleoanthropologists refer to it as a transitional species between middle Homo and the line to which modern humans belong.
Homo ergaster
The oldest known appearance of Homo ergaster is in Africa around 1.9 million years ago. This species had a rounded cranium, prominent brow ridge (bony, protruding ridge across the brow above the eyes), small teeth, and other features that it shared with the later H. erectus. Many paleoanthropologists consider H. ergaster a good candidate for an ancestor of modern humans because it also had certain modern skull features, including relatively thin cranial bones. Specimens of H. ergaster are especially well known in the time range 1.6 to 1.7 million years ago.
The most important fossil find of this species is a nearly complete skeleton of a young male, dated 1.6 million years old, from West Turkana, Kenya. The sex of the skeleton is determined from the shape of the pelvis and by its brow ridges, and an age of 9 to 12 years at death is known by the pattern of tooth eruption and bone growth. It is not known how the boy died. The "Turkana boy" had long leg bones adapted for long distance walking. The length of his arms, legs, and trunk were proportioned as in modern humans, in contrast with the apelike short legs (and long arms) of H. habilis and A. afarensis. This skeleton is remarkable for the evidence it offers of an early human fully committed to bipedality, with no signs of significant tree climbing. H. ergaster had an elongated body, indicating that it was adapted to hot, tropical climates, just as modern humans from the tropics also tend to have long, slender bodies. An adult height of about 6-ft and a body weight of 150 lbs. is estimated from the Turkana skeleton, assuming that the body underwent an adolescent growth spurt as modern human teenagers usually do.
Homo ergaster, H. rudolfensis, and H. habilis add significantly to the known diversity of early human species nearly 2 million years ago. Most paleoanthropologists used to believe that human evolution consisted of a single line that evolved progressively over time, an australopith species followed by Homo erectus, then Neanderthals, and finally modern Homo sapiens. But now it is thought that as many as five different species of early human, including robust australopiths, inhabited Africa about 1.9 million years ago. Since hybridization rarely succeeds between species with significant skeletal differences, only one of these species could have been the ancestor of modern humans. H. ergaster is widely accepted as an ancestor, although it arose from earlier populations of Homo, possibly H. habilis or H. rudolfensis. It appears that periods of species diversity and extinction have been common during human evolution, a similarity to the evolutionary histories of other organisms. Modern H. sapiens has the distinction of being the only living human species today.
Homo erectus
Paleoanthropologists now know that humans first evolved in Africa and lived only on that continent for at least the first two million years of our evolutionary history. But this finding was not clear to scientists until quite recently. In fact, the first discoveries of early human fossils in the 1800s were in Europe. Later discoveries came from Asia and included fossils from the Indonesian island of Java. The first finds from Java were in 1891 by Dutch physician Eugene Dubois. Dubois named this early human Pithecanthropus erectus, or "erect ape-man". Today paleoanthropologists refer to this species as Homo erectus. H. erectus was the first human species known to have spread in large numbers beyond the African continent.
H. erectus appears to have evolved in Africa from earlier populations of Homo ergaster, and then spread to Asia between 1.8 million and 1.5 million years ago. The youngest known fossils of this species, from the Solo River in Java, have been dated to about 50,000 years old. So this species was very successful, both widespread (Africa and Asia) and long-lived, having survived for more than 1.5 million years.
H. erectus had a low and rounded braincase that was elongated from front to back, a prominent brow ridge, and an adult cranial capacity of 800 to 1,250 cc, an average twice that of the australopiths. Its bones, including the cranium, were thicker than those of earlier species. Prominent muscle markings and thick, reinforced areas on the bones of H. erectus indicate that its body could withstand powerful movements and stresses. Its body was well adapted for bipedal walking. Although its teeth were much reduced in size from Australopithecus, its lower jaw was still quite thick and rugged looking.
In the 1920s and 1930s, the most famous collection of H. erectus fossils was excavated from a cave at the site Zhoukoudian (Chou-k'ou-tien), China, near Beijing (Peking). Scientists dubbed these fossil humans Sinanthropus pekinensis, or Peking Man, but others later reclassified them as H. erectus. The Zhoukoudian cave yielded the fragmentary remains of over 30 individuals, ranging from about 500,000 to 250,000 years old. These fossils were lost near the outbreak of World War II, but anatomist Franz Weidenreich had made excellent casts and descriptions of the finds. Further studies at the cave site have yielded more H. erectus remains.
Other important fossil sites of H. erectus in China include Lantian, Yuanmou, Yunxian, and Hexian. Researchers have also recovered many tools made by H. erectus in China at sites such as Nihewan and Bose, and other sites of similar age (at least 1 million to 250,000 years old).
Ever since the discovery of H. erectus, scientists have debated whether this species was a direct ancestor of later humans, including H. sapiens. The last populations of H. erectus -- such as those from the Solo River in Java -- may have lived as recently as 50,000 years ago, at the same time as populations of H. sapiens. Although modern humans could not have evolved in that amount of time from these late populations of H. erectus, it is possible that earlier East Asian populations could have given rise to H. sapiens.
Homo heidelbergensis
Many paleoanthropologists believe that early humans migrated into Europe by 800,000 years ago, and that these populations were not Homo erectus. A growing number of scientists refer to these early migrants to Europe -- who predated both Neanderthals and H. sapiens in the region -- as H. heidelbergensis. The species name comes from a 500,000-year-old jaw found near Heidelberg, Germany.
Scientists have found few human fossils in Africa for the period between 1.2 million and 600,000 years ago, during which H. heidelbergensis or their ancestors first migrated into Europe. Populations of Homo ergaster (or possibly H. erectus) appear to have lived until at least 800,000 years ago in Africa, and possibly until 500,000 years ago in northern Africa. When these populations disappeared, other massive-boned and larger-brained humans -- possibly H. heidelbergensis -- appear to have replaced them. Scientists have found fossils of these stockier humans at sites in Bodo, Ethiopia; Saldanha (also known as Elandsfontein), South Africa; Ndutu, Tanzania; and Kabwe, Zimbabwe.
There are at least three different ideas about these fossils. Some scientists place the African fossils in the species H. heidelbergensis, and think that this species gave rise to both Neanderthals (in Europe) and H. sapiens (in Africa). Others think that the European and African fossils are distinct, and that the African fossils belong in their own species (not H. heidelbergensis), which gave rise to H. sapiens. Still others prefer the long-held view that H. erectus and H. sapiens form a single evolving lineage, and that the African fossils should be placed in the category of archaic H. sapiens. According this last view, H. erectus was the direct ancestor of modern humans, but the first two views give that role either to H. heidelbergensis, saying that the species spread through Europe and Africa, or to a separate African species. The main point is this: There is a growing number of fossils from Asia, Africa, and Europe that are intermediate between early H. ergaster and H. sapiens, and this makes it hard to decide how to divide up the variation in the bones and to determine which group of fossils represents the most likely ancestor of later humans.
Why Did Humans Spread Out of Africa?
Humans evolved in Africa and lived only there for as long as 2, or possibly 3, million years. So scientists wonder what finally triggered the first human migration out of Africa (a movement that coincided with the spread of early human populations throughout the African continent). The answer to this question depends, in part, on knowing exactly when that first migration occurred. Some studies claim that sites in Asia and Europe contain crude stone tools and fossilized fragments of humanlike teeth that date from more than1.8 million years ago. Although these claims remain unconfirmed, small populations of humans may have entered Asia prior to 1.7 million years ago, followed by a more substantial spread between 1.7 million and 1 million years ago. The first major habitation of central and western Europe, on the other hand, does not appear to have occurred until between 1 million and 500,000 years ago.
By the time of the earliest humans, the world’s continents were in essentially the same positions they now occupy, so continental drift had no impact at all on human dispersal or the origin of races. Migrations were the result of several factors. First, the fall and subsequent rise in sea level occurred repeatedly, especially over the past 2.8 million years, coinciding with the expansion and melting of glaciers. When sea level fell, coastal land area expanded, which included the development of land bridges between continents and islands. Land expansion allowed new areas to be colonized. Second, climate change led to the movement, expansion, and contraction of habitats that were favorable to early humans and other organisms. Migration from one region to another may have simply occurred as early humans tracked climate conditions or habitats to which they were already adapted. Finally, the origin of new adaptive behaviors, such as the ability to control fire or improvement in language communication, may have also resulted in the ability of populations to expand into new types of habitat.
Scientists once thought that advances in stone technology could be correlated with the earliest human spread beyond Africa. However, these advances do not seem to be related. By 1.6 million years ago early humans began to make new kinds of tools commonly known as handaxes and cleavers. But this new technology (called Acheulean) was apparently not responsible for the spread, as the earliest human presence in Asia is older than the first handaxes. Also, most of the tool kits from East Asian sites more than 200,000 years old are made up of simply shaped cores and flakes rather than symmetrical handaxes.
It's been suggested that the early Pleistocene spread of humans was part of a wider colonization of new regions by meat-eating animals, like lions and hyenas. The dispersal of these African carnivores to Eurasia also occurred during the early Pleistocene, between 1.6 million and 780,000 years ago. Meat-eating may have allowed H. erectus to move through many different environments without having to learn the diverse poisonous plants in different regions. The long dispersal to eastern Asia, however, may have been gradual and occurred through the lower latitudes and environments similar to Africa's. Even a very minor expansion of populations each generation (such as 1 mile every 20 years) would have allowed East African H. erectus to reach Southeast Asia in only 150,000 years. Careful comparison of fossil animals, stone tools, and early human fossils unearthed from African, Asian, and European sites will help to test these ideas.
Late Homo
The origin of our own species, Homo sapiens, is one of the most hotly debated topics in paleoanthropology. One distinctive group of fossil humans, the Neanderthals, and their relationship to modern humans has been at the center of the debate. Traditionally, paleoanthropologists have classified as Homo sapiens any fossil human younger than 500,000 years old with a braincase larger than that of H. erectus. Many scientists who believe that modern humans descend from a single line dating back to H. erectus use the term "archaic Homo sapiens" to cover a wide variety of fossil humans that predate anatomically modern H. sapiens. Therefore, Neanderthals are sometimes classified as a subspecies of archaic H. sapiens -- H. sapiens neanderthalensis. Other scientists think that the variation in archaic H. sapiens actually falls into clearly identifiable sets of traits, and that any type of human fossil exhibiting a unique set of traits should have a new species name. According to this view, the Neanderthals belong to their own species, H. neanderthalensis.
Early Australopiths
The australopiths can be divided into an early group of species (sometimes known as gracile australopiths), which arose prior to 3 million years ago; and a later group, known as robust australopiths, which evolved after 3 million years ago. The earlier australopiths -- of which several species evolved between 4.4 million and 3 million years ago -- generally had smaller teeth and jaws. The later robusts had larger faces with large jaws and cheek teeth.
A 5-million-year-old jaw fragment with one molar tooth, found in Kenya, and another jaw with two molars, about 4.5 million years old, may be the oldest australopith fossils. But scientists have not yet agreed on the matter since these fossils are so fragmented and do not tell us about the canine teeth or bipedal walking. Several of the early australopiths are given the genus name Australopithecus. Yet some of the oldest finds of australopith bones, dated about 4.4 million years old, have been given a different name because of their very ancient combination of apelike and humanlike traits. These fossils, first discovered in Ethiopia in 1994, are called Ardipithecus ramidus.
Ardipithecus ramidus
An Ethiopian member of a research team led by paleoanthropologist Tim White discovered the earliest known australopith species in Ethiopia in 1994. These recognizably human fossils were estimated to be about 4.4 million years old. White and his colleagues gave their discovery the name Ardipithecus ramidus. Ramid means "root" in the Afar language of Ethiopia, and refers to the closeness of this new species to the roots of humanity. At the time of this discovery, the genus Australopithecus was scientifically well established. White devised the genus name Ardipithecus to distinguish this new species from other australopiths because it had a very ancient combination of apelike and humanlike traits.
The teeth of Ardipithecus ramidus have a thin outer layer of enamel--a trait also seen in chimps and gorillas, but not in other australopith species or most older fossil apes. This trait suggests a fairly close relationship with an ancestor of the African apes. In addition, the skeleton shows strong similarities to that of a chimpanzee but has slightly reduced canine teeth and adaptations for bipedalism.
Australopithecus anamensis
In 1965 a research team form Harvard University discovered a single arm bone of an early human at the site of Kanapoi in northern Kenya. The researchers estimated this bone to be 4 million years old, but could not identify the species to which it belonged. It was not until 1994 that a research team, led by paleoanthropologist Meave Leakey, found numerous teeth and fragments of bone at the site that could be linked to the previously discovered fossil. Leakey and her colleagues determined that the fossils were those of a very primitive species of australopith, which was given the name Australopithecus anamensis. Researchers have since found other A. anamensis fossils at nearby sites, dating between about 4.2 million and 3.9 million years old. The skull of this species appears apelike, while its enlarged tibia or lower leg bone, indicates that it supported its full body weight on one leg at a time, as in regular bipedal walking.
Australopithecus afarensis
Australopithecus anamensis was quite similar to another, much better-known species, A. afarensis, a gracile australopith that thrived in eastern Africa between about 3.9 million and 3 million years ago. The most celebrated fossil of this species, known as Lucy, is a partial skeleton of a female discovered by paleoanthropologist Donald Johanson in 1974 at Hadar, Ethiopia. Lucy lived 3.2 million years ago. Several hundred fossils of this species have been described from Hadar, including a collection representing at least 13 individuals of both sexes and various ages, all from a single site that is dated 3.2 million years old.
Researchers working in northern Tanzania have also found fossilized bones of A. afarensis at Laetoli, a 3.6 million year old site best known for spectacular trails of bipedal human footprints (and the prints of other animals) preserved in a hardened volcanic ash. These footprints were discovered in 1978 by a research team led by paleoanthropologist Mary Leakey. They provide irrefutable evidence that australopiths regularly walked bipedally.
The controversy about how the australopiths moved has mainly focused on Lucy's species A. afarensis. While Lucy certainly walked upright, she stood only 3.5 feet tall and had longer, more powerful arms than most later human species, which suggests that she was also adept at climbing trees. And while the Laetoli footprints were made by bipedal humans, some scientists have argued that the imprints of the heel, arch, and toes are not exactly like those made by modern human feet. In addition, other fossils from Hadar and Laetoli come from individuals much larger than Lucy, up to 5 feet tall. This has caused controversy over whether the entire set of fossils represents one or two species, although most scientists accept the single-species idea since large and small adults, probably male and female, occurred together at the same site at Hadar.
Another controversy arises from the claim that A. afarensis was the common ancestor of both later australopiths and the modern human genus, Homo. While this idea remains a strong possibility, the similarity between Australopithecus afarensis and another australopith species -- one from southern Africa, named Australopithecus africanus -- makes it difficult to decide which of the two species gave rise to the genus Homo.
Australopithecus africanus
Australopithecus africanus thrived in what is now the Transvaal region of South Africa between about 3.5 million and 2.5 million years ago. The anatomist Raymond Dart described this species -- the first known australopith -- on the basis of a fossil discovered in 1924 at Taung, South Africa. For two decades after this discovery, almost no one in the scientific community believed Dart's claim that the skull came from an ancestral human. In the late 1930s and 1940s, teams led by paleontologist Robert Broom unearthed many more australopith skulls and other bones from the Transvaal sites of Sterkfontein and Swartkrans.
A. africanus generally had a more globular braincase and less primitive-looking face and teeth than did A. afarensis. Thus some scientists consider the southern species of early australopith to be a likely ancestor of the genus Homo. According to other scientists, however, A. africanus had facial features that mark it on the path to the robust australopiths found later in the same region. Some recent finds from the Transvaal site of Sterkfontein indeed have begun to blur the distinction between the early australopiths and the later robust species. In 1998 a research team led by South African paleoanthropologist Ronald Clarke unearthed an almost complete early australopith skeleton at Sterkfontein. Although it may prove to be a new species, this important find may resolve some of the questions about where A. africanus fits in the story of human evolution.
The Later Australopiths
By 2.7 million years ago, the robust australopiths had evolved. The robust australopiths represent an intriguing group of early humans because they survived for a long time and were quite common compared to other early human species. They had adaptations that differed from the larger-brained populations of Homo who lived at the same time, but then mysteriously became extinct by one million years ago. Although the word "robust" originally referred to the larger body once believed to exist in these australopiths, they are now known to have been roughly the same size as A. afarensis and A. africanus. Instead, "robust" accurately describes the very massive molar teeth, face, and skull muscle markings that characterized these species. The robust australopiths had megadont cheek teeth -- broad, thick-enameled molars and premolars -- which formed a flattened and worn surface. Their incisor teeth, by contrast, were small. An expanded, flattened, and more vertical face accompanied this emphasis on the back teeth. The combination of broad molars and large face was effective in absorbing the stresses of strong chewing. Along the top of the head was a sagittal crest, a raised area of bone along the skull's midline from front to back, where thick muscles that moved the jaw up and down were attached. The bars of bone along each side of the skull (the zygomatic arches) were positioned far to the side, which allowed huge openings for the chewing muscles near where they attached to the lower jaw. Altogether, these traits indicate very powerful and prolonged chewing of food. A similar expansion in the chewing structures can be seen in other groups of plant-eating animals. Microscopic wear on the teeth of P. robustus and P. boisei appear to support the idea of a vegetarian diet. It is thought that the robust australopiths had a diet consisting of tough, fibrous plant food, such as seed pods and underground tubers. However, chemical studies of fossil bones suggest that the southern species may also have eaten animals.
Because they share the features of heavy chewing, the robust australopiths appear to represent a distinct evolutionary group of early humans. Many paleoanthropologists have linked the robust species together with a unique genus name, Paranthropus (the name originally given to the southern robust species). This classification implies that the first robust species, P. aethiopicus, became separated from the other australopiths and then evolved into P. boisei and P. robustus (the other two robust species). Other researchers have kept the robust species within the genus Australopithecus, stating that the eastern forms (A. aethiopicus and A. boisei) evolved their massive teeth from the early australopiths of the region (perhaps A. afarensis), whereas the southern species (robustus) evolved independently from A. africanus. If this type of parallel evolution occurred, the robust species would form two separate side branches of the human family tree. Due to alternative views such as this, the robust species are often known by more than one name (such as Australopithecus boisei and Paranthropus boisei).
Paranthropus aethiopicus
The earliest known robust species, Paranthropus aethiopicus, had evolved in eastern Africa by 2.7 million years ago. In 1985 at West Turkana, Kenya, paleoanthropologist Alan Walker discovered the fossil skull that defined this species. It became known as the "black skull" because of the color it had absorbed from minerals in the ground. The skull, dated 2.5 million years old, had a tall sagittal crest toward the back of its cranium and a face that projected far outward from the forehead. P. aethiopicus shares some primitive features with A. afarensis -- that is, features that originated in the earlier East African australopith. This may indicate that P. aethiopicus evolved from A. afarensis.
Paranthropus boisei
Paranthropus boisei, the other well-known East African robust australopith, lived over a large geographic range between about 2.3 million and 1.2 million years ago. In 1959 Mary Leakey discovered the first fossil of this species -- a nearly complete skull at the site of Olduvai Gorge in Tanzania. Paleoanthropologist Louis Leakey, husband of Mary, named the new species Zinjanthropus boisei (Zinjanthropus translates as "East African man"). This skull, which is dated to 1.8 million years ago, has the most specialized features of all the robust species. It has a massive, wide, and dished-in face that was capable of withstanding extreme chewing forces, and its molars are four times the size of those in modern humans. Since the discovery of Zinjanthropus, now recognized as an australopith, scientists have found great numbers of P. boisei fossils in Tanzania, Kenya, and Ethiopia.
Paranthropus robustus
The southern robust species, which has the descriptive name Paranthropus robustus, lived between about 1.8 million and 1.3 million years ago in the Transvaal, the same region that was home to A. africanus. In 1938 Robert Broom, who had found many A. africanus fossils, bought a fossil jaw and molar that looked distinctly different from those in A. africanus. After finding the site of Kromdraai, from which the fossil had come, Broom collected many more bones and teeth that together convinced him to name a new species, which he called Paranthropus robustus (Paranthropus meaning "beside man").
-Savage Science